Искра

Если и случится согрешить – верь в милосердие Божие

Исаака ньютона

by adminon 15.09.202015.09.2020

Исаак Ньютон занимался не только физикой и математикой, но и алхимией. Тайным химическим экспериментам он посвятил 30 лет жизни. Теперь его лабораторные журналы, комментарии к ним и схемы опытов, проведенных по его методикам, опубликованы в интернете и доступны широкому читателю.

Сэр Исаак Ньютон, культовый ученый, пример для подражания и человек удивительной судьбы, оказывается, жил почти тайной жизнью, о которой мало что известно. Он занимался алхимией, хотя и не оставил после себя химических трудов. Известно, что в 1691 году он серьезно отравился, а после смерти в его организме было обнаружено опасное содержание ртути. Так что же стояло за этим увлечением и насколько великий физик был увлечен идеей превращение свинца в золото?

Профессор истории и философии Университета Индианы в Блумингтоне Уильям Ньюман посвятил последние шесть лет изучению этой области интересов Ньютона и запустил сайт «Алхимия Исаака Ньютона», посвященный ей.

Междисциплинарный проект, в частности, открывает доступ к 23 отредактированным работам Ньютона по алхимии. Они опубликованы впервые.

На сайте, в частности, подробно рассказывается об оптических экспериментах, с помощью которых Ньютон доказал, что белый цвет представляет собой смесь цветов. В общей сложности, Ньютон занимался алхимией около 30 лет, часть из них пришлись на годы уединенной жизни на малой родине ученого – в Вулсторпе, куда он вынужден был уехать в годы тяжелой эпидемии чумы в Англии в 1664-1666 годах. Исследователи работ Ньютона утверждают, что его опыты с дисперсией света в призмах тесно связаны с алхимическими трудами.

«Ньютон постоянно занимался алхимией в течение 30 лет, но он скрывал свои работы в этой области от современников и коллег,

поэтому существует много спекуляций на эту тему», — разъяснил Ньюман цель своей работы.

Историк и его помощники адаптировали к современному языку, отредактировали и интерпретировали алхимические работы Ньютона: лабораторные журналы и другие документы. Тексты статей Ньютона доступны для автоматического поиска, а лабораторные журналы снабжены иллюстрациями опытов – репликами экспериментов ученого (их точными копиями, проведенными в условиях и с применением лишь инструментов, доступных в XVII веке).

«Алхимия Исаака Ньютона» не только открывает окно в мир мыслей и творчества великого гения, но и живописует полотно материальной культуры и технологий «алхимии» тех времен»,

— ответил Ньюман.

Конечная цель проекта – создать полные аннотации к текстам Ньютона и поместить все данные в общую интерактивную систему, дающую возможность легко и быстро работать с ними. К данному моменту историки обработали и выложили в сеть, в общей сложности, более 600 страниц текста. Среди них – самый большой лабораторный журнал Ньютона, находившийся в библиотеке Кембриджского университета.

Посетители сайта могут ознакомиться с системой графических знаков, разработанной Ньютоном для обозначения веществ. Некоторые формулы очень экзотичны и называются «Зеленый Лион», «Звезда Регул сурьмы», «Жезл кадуцея ртути» (кадуцей – магический жезл, обвитый двумя змеями, жезл Гермеса (Меркурия), символ медицины). Такие термины были общеприняты в алхимии того времени, и Ньютон также пользовался ими.

Историки химии повторили алхимические опыты, описанные в лабораторных журналах Ньютона и его «Сборнике алхимических терминов». Используя примитивную угольную печь и изготовленную по старым методикам лабораторную посуду, им удалось получить «купоросное масло» (концентрированную серную кислоту H2SO4), «крепкую водку» (азотную кислоту HNO3) и соляную кислоту (хлороводородную кислоту HCl).

Фото эксперимента по получению серной кислоты из железного купороса//webapp1.dlib.indiana.edu/newton
newton-iq.com

Кроме химии среди «сторонних» увлечений Ньютона выделяют богословие.

Ньютон пытался подойти к анализу Библии с научной точки зрения, разработал свой вариант библейской хронологии и толковал Апокалипсис.

Что касается увлечения Ньютона алхимией, то автор русскоязычной биографии ученого советский историк Борис Кузнецов (также писал о Альберте Эйнштейне, Галилео Галилее, Джордано Бруно) полагает, что в нем было больше научных атомистических подходов, нежели мистических стремлений получить золото.

«Он верил в возможность превращения одного металла в другой и в продолжение трёх десятилетий занимался алхимическими исследованиями и изучал алхимические труды средневековья и древности… Сам факт преобладания теоретического интереса и полного отсутствия интереса к получению золота выводит Ньютона за пределы алхимии как элемента средневековой культурной традиции… В основе его атомистики лежит представление об иерархии корпускул, образованной всё менее интенсивными силами взаимного притяжения частей. Эта идея бесконечной иерархии дискретных частиц вещества связана с идеей о единстве материи. Ньютон не верил в существование не способных превращаться друг в друга элементов. Напротив, он предполагал, что представление о неразложимости частиц и, соответственно, о качественных различиях между элементами связано с исторически ограниченными возможностями экспериментальной техники», — писал историк.

(04.01.1643, Вулсторп, ок. Грантема – 31.03.1727, Кенсингтон). Английский физик и математик, создавший теоретические основы механики и астрономии, открывший закон всемирного тяготения, разработавший (наряду с Г. Лейбницем) дифференциальное и интегральное исчисление, изобретатель зеркального телескопа и автор важнейших экспериментальных работ по оптике.

Ньютон родился в семье фермера; отец Ньютона умер незадолго до рождения сына. В 12 лет Ньютон начал учиться в Грантемской школе, в 1661 поступил в Тринити-колледж Кембриджского университета в качестве субсайзера (так назывались бедные студенты, выполнявшие для заработка обязанности слуг в колледже), где лекции по математике с весны 1664 читал И. Барроу. С весны 1665 по весну 1667, во время эпидемии чумы, находился в своей родной деревне Вулсторп, лишь ненадолго приезжая в Кембридж; эти годы были наиболее продуктивными в научном творчестве Ньютона. Здесь у Ньютона сложились в основном те идеи, которые привели его к созданию варианта анализа бесконечно малых, к изобретению зеркального телескопа (собственноручно изготовленного им в 1668), открытию закона всемирного тяготения, здесь он провёл опыты над разложением света. В 1668 Ньютону была присвоена степень магистра, а в 1669 И. Барроу передал ему почётную люкасовскую физико-математическую кафедру, которую Ньютон занимал до 1701. В 1671 Ньютон построил второй зеркальный телескоп — больших размеров и лучшего качества. Демонстрация телескопа произвела сильное впечатление на современников, и вскоре после этого Ньютон был избран (в январе 1672) членом Лондонского королевского общества (в 1703 стал его президентом). В 1687 он опубликовал свой грандиозный труд «Математические начала натуральной философии» (кратко — «Начала»). В 1695 получил должность смотрителя Монетного двора (этому, очевидно, способствовало то, что Ньютон изучал свойства металлов). Ньютону было поручено руководство перечеканкой всей английской монеты. Ему удалось привести в порядок расстроенное монетное дело Англии, за что он получил в 1699 пожизненное высокооплачиваемое звание директора Монетного двора. В том же году Ньютон избран иностранным членом Парижской АН. В 1705 за научные труды он возведён в дворянское достоинство. Похоронен Ньютон в английском национальном пантеоне — Вестминстерском аббатстве.

Основные вопросы механики, физики и математики, разрабатывавшиеся Ньютоном, были тесно связаны с научной проблематикой его времени. Оптикой Ньютон начал интересоваться ещё в студенческие годы, его исследования в этой области были связаны со стремлением устранить недостатки оптических приборов. В первой оптической работе «Новая теория света и цветов», доложенной им в Лондонском королевском обществе в 1672, Ньютон высказал свои взгляды о «телесности света» (корпускулярную гипотезу света). Эта работа вызвала бурную полемику, в которой противником корпускулярных взглядов Ньютона на природу света выступил Р. Гук (в то время господствовали волновые представления). Отвечая Р. Гуку, Ньютон высказал гипотезу, сочетавшую корпускулярные и волновые представления о свете. Эту гипотезу Ньютон развил затем в соч. «Теория света и цветов», в котором он описал также опыт с т. н. кольцами Ньютона и установил периодичность света. При чтении этого сочинения на заседании Лондонского королевского общества Р. Гук выступил с притязанием на приоритет, и раздражённый Ньютон принял решение не публиковать оптических работ. Многолетние оптические исследования Ньютона были опубликованы им лишь в 1704 (через год после смерти Р. Гука) в фундаментальном труде «Оптика». Принципиальный противник необоснованных и произвольных гипотез, Ньютон начинает «Оптику» словами: «Мое намерение в этой книге — не объяснять свойства света гипотезами, но изложить и доказать их рассуждениями и опытами» (М., 1954, с. 9). В «Оптике» Ньютон описал проведённые им чрезвычайно тщательно эксперименты по обнаружению дисперсии света — разложения с помощью призмы белого света на отдельные компоненты различной цветности и преломляемости и показал, что дисперсия вызывает искажение в линзовых оптических системах — хроматическую аберрацию. Ошибочно считая, что устранить искажение, вызываемое ею, невозможно, Ньютон сконструировал зеркальный телескоп. Наряду с опытами по дисперсии света Ньютон описал интерференцию света в тонких пластинках и изменение интерференционных цветов в зависимости от толщины пластинки в кольцах Ньютона. По существу Ньютон первым измерил длину световой волны. Кроме того, он описал здесь свои опыты по дифракции света. «Оптика» завершается специальным приложением — «Вопросами», где Ньютон высказывает свои физические взгляды. В частности, здесь он излагает воззрения на строение вещества, в которых присутствует в неявном виде понятие не только атома, но и молекулы. Кроме того, Ньютон приходит к идее иерархического строения вещества: он допускает, что «частички тел» (атомы) разделены промежутками — пустым пространством, а сами состоят из более мелких частичек, также разделённых пустым пространством и состоящих из ещё более мелких частичек, и т. д. до твёрдых неделимых частичек. Ньютон вновь рассматривает здесь гипотезу о том, что свет может представлять собой сочетание движения материальных частиц с распространением волн эфира.

Вершиной научного творчества Ньютона являются «Начала», в которых Ньютон обобщил результаты, полученные его предшественниками (Г. Галилей, И. Кеплер, Р. Декарт, X. Гюйгенс, Дж. Борелли, Р. Гук, Э.Галлей и др.), и свои собственные исследования и впервые создал единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Здесь Ньютон дал определения исходных понятий — количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы. Формулируя понятие количества материи, Ньютон исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность Ньютон понимал как степень заполнения единицы объёма тела первичной материей. Ньютон впервые рассмотрел основной метод феноменологического описания любого физического воздействия через посредство силы. Определяя понятия пространства и времени, он отделял «абсолютное неподвижное пространство» от ограниченного подвижного пространства, называемое «относительным», а равномерно текущее, абсолютное, истинное время, называемое «длительностью», — от относительного, кажущегося времени, служащего в качестве меры «продолжительности». Эти понятия времени и пространства легли в основу классической механики. Затем Ньютон сформулировал свои три знаменитые «аксиомы, или законы движения»: закон инерции (открытый Г. Галилеем, первый закон Ньютона), закон пропорциональности количества движения силе (второй закон Ньютона) и закон равенства действия и противодействия (третий закон Ньютона) — так называемые законы механики Ньютона. Из 2-го и 3-го законов он выводит закон сохранения количества движения для замкнутой системы. Ньютон рассмотрел движение тел под действием центральных сил и доказал, что траекториями таких движений являются конические сечения (эллипс, гипербола, парабола). Он изложил своё учение о всемирном тяготении, сделал заключение, что все планеты и кометы притягиваются к Солнцу, а спутники — к планетам с силой, обратно пропорциональной квадрату расстояния, и разработал теорию движения небесных тел. Ньютон показал, что из закона всемирного тяготения вытекают законы Кеплера и важнейшие отступления от них. Так, он объяснил особенности движения Луны (вариацию, попятное движение узлов и т. д.), явление прецессии и сжатие Юпитера, рассмотрел задачи притяжения сплошных масс, теории приливов и отливов, предложил теорию фигуры Земли.

В «Началах» Ньютон исследовал движение тел в сплошной среде (газе, жидкости) в зависимости от скорости их перемещения и привёл результаты своих экспериментов по изучению качания маятников в воздухе и жидкостях. Здесь же он рассмотрел скорость распространения звука в упругих средах. Ньютон доказал посредством математического расчёта полную несостоятельность гипотезы Р. Декарта, объяснявшего движение небесных тел с помощью представления о разнообразных вихрях в эфире, заполняющем Вселенную. Ньютон нашёл закон охлаждения нагретого тела. В этом же сочинении Ньютон уделил значительное внимание закону механического подобия, на основе которого развилась теория подобия. Таким образом, в «Началах» впервые дана общая схема строгого математического подхода к решению любой конкретной задачи земной или небесной механики. Дальнейшее применение этих методов потребовало, однако, детальной разработки аналитической механики (Л. Эйлер, Ж. Д’Аламбер, Ж. Лагранж, У. Гамильтон) и гидромеханики (Л. Эйлер и Д. Бернулли). Последующее развитие физики выявило пределы применимости механики Ньютона.

Задачи естествознания, поставленные Ньютоном, потребовали разработки принципиально новых математических методов. Математика для Ньютона была главным орудием в физических изысканиях; он считал, что понятия математики заимствуются извне и возникают как абстракция явлений и процессов физического мира, что, по существу, математика является частью естествознания.

Разработка дифференциального и интегрального исчисления явилась важной вехой в развитии математики. Большое значение имели также работы Ньютона по алгебре, интерполированию и геометрии. Основные идеи метода флюксий сложились у Ньютона под влиянием трудов его предшественников и современников в 1665—66. К этому времени относятся открытие Ньютона взаимно обратного характера операций дифференцирования и интегрирования и фундаментальные открытия в области бесконечных рядов, в частности индуктивное обобщение т. н. теоремы о биноме Ньютона на случай любого действительного показателя. Вскоре были написаны и основные сочинения Ньютона по анализу, изданные, однако, значительно позднее. Некоторые математические открытия Ньютона получили известность уже в 70-е гг. благодаря его рукописям и переписке.

В исходных понятиях и терминологии метода флюксий отразилось влияние кинематико-математических идей, восходящих к натурфилософским школам 14 в. и по-новому развитых целым рядом учёных 17 в. — Дж. Непером, Г. Галилеем, Б. Кавальери, Э. Торричелли, И. Барроу и др. Понятие непрерывной математической величины Ньютон вводит как абстракцию от различных видов непрерывного механического движения. Линии производятся движением точек, поверхности — движением линий, тела — движением поверхностей, углы — вращением сторон и т. д. Непрерывные переменные величины Ньютон назвал флюентами (текущими величинами, от лат. fluo — теку). Общим аргументом различных текущих величин — флюент — является у Ньютона «время», понимаемое формально, как некая отвлечённая равномерно текущая величина, к которому отнесены прочие, зависимые переменные. Скорости изменения флюент Ньютон назвал флюксиями, а необходимые для вычисления флюксий бесконечно малые изменения флюксий — «моментами» (у Г. Лейбница они назывались дифференциалами). Таким образом, Ньютон положил в основу понятия флюксии (производной) и флюенты (интеграла).

В сочинении «Анализ при помощи уравнений с бесконечным числом членов» (1669, опубл. 1711) Ньютон вычислил производную и интеграл любой степенной функции. Различные рациональные, дробно-рациональные, иррациональные и некоторые трансцендентные функции (логарифмическую, показательную, синус, косинус, арксинус) Ньютон выражал с помощью бесконечных степенных рядов. В этом же труде Ньютон изложил метод численного решения алгебраических уравнений (метод Ньютона), а также метод для нахождения разложения неявных функций в ряд по дробным степеням аргумента. Метод вычисления и изучения функций их приближением бесконечными рядами приобрёл огромное значение для всего математического анализа и его приложений.

Наиболее полное изложение дифференциального и интегрального исчисления содержится в так называемом «Методе флюксий и бесконечных рядов» (1670— 71, под таким названием это сочинение впервые было издано в английском переводе 1736; в сохранившейся латинской рукописи самого И. Ньютона сочинение это не имеет заглавия). Здесь Ньютон формулирует две основные взаимно обратные задачи анализа:

1) определение скорости движения в данный момент времени по известному пути, или определение соотношения; между флюксиями по данному соотношению между флюентами (задача дифференцирования), и

2) определение пройденного за данное время пути по известной скорости движения, или определение соотношения между флюентами по данному соотношению между флюксиями (задача интегрирования дифференциального уравнения и, в частности, отыскания первообразных).

Метод флюксий применяется здесь к большому числу геометрических вопросов (задачи на касательные, кривизну, экстремумы, квадратуры, спрямления и др.); здесь же выражается в элементарных функциях ряд интегралов от функций, содержащих квадратный корень из квадратного трёхчлена. Большое внимание уделено в «Методе флюксий» интегрированию обыкновенных дифференциальных уравнений, причём основную роль играет представление решения в виде бесконечного степенного ряда. Ньютону принадлежит также решение некоторых задач вариационного исчисления. Во введении к «Рассуждению о квадратуре кривых» (написанном в начале 1670-х гг., опубл. 1704) и в «Началах» он намечает программу построения метода флюксий на основе учения о пределе, о «последних отношениях исчезающих величин» или «первых отношениях зарождающихся величин», не давая, впрочем, формального определения этих понятий и рассматривая их как интуитивно очевидные, пробные понятия (мгновенной) скорости. Учение Ньютона о пределе через ряд посредствующих звеньев (Ж. Д’Аламбер, Л. Эйлер) получило глубокое развитие в математике 19 в. (О. Коши и др.).

В «Методе разностей» (опубл. 1711) Ньютон дал решение задачи о проведении через n+1 данные точки с равностоящими или неравностоящими абсциссами параболической кривой n-го порядка и предложил т.н. интерполяционную формулу Ньютона, а в «Началах» дал теорию конических сечений. В «Перечислении кривых третьего порядка» (опубл. 1704) Ньютоном приводится классификация этих кривых, обобщаются понятия диаметра и центра, указываются способы построения кривых 2-го и 3-го порядков по различным условиям (классификация Ньютона). Этот труд сыграл большую роль в развитии аналитической и отчасти проективной геометрии. Во «Всеобщей арифметике» (опубл. в 1707 по лекциям, читанным в 70-е гг. 17 в.) содержатся важные теоремы о симметрических функциях корней алгебраических уравнений, об отделении корней, о приводимости уравнений и др. Алгебра окончательно освобождается у Ньютона от геометрической формы, и его определение числа не как собрания единиц, а как отношения длины любого отрезка к отрезку, принятому за единицу, явилось важным этапом в развитии учения о действительном числе.

В недавно опубликованных рукописях И. Ньютона содержится ряд неизвестных ранее его открытий, как, например, разложения в степенные ряды Тейлора и Маклорена; метод позволяет преобразовывать знакопеременные расходящиеся ряды в сходящиеся и ускорять сходимость рядов сходящихся (этот метод много позже был вновь предложен Л. Эйлером, а известен под его именем) и др.

Созданная Ньютоном теория движения небесных тел, основанная на законе всемирного тяготения, была признана крупнейшими английскими учёными того времени, но резко отрицательно встречена на европейском континенте. Противниками взглядов Ньютоном (в частности, в вопросе о тяготении) были картезианцы, воззрения которых господствовали в Европе (в особенности во Франции) в 1-й пол. 18 в. Убедительным доводом в пользу теории Ньютона явилось обнаружение рассчитанной им приплюснутости земного шара у полюсов вместо выпуклостей, ожидавшихся по учению Р. Декарта. Исключительную роль в укреплении авторитета теории Ньютона сыграла работа А. Клеро по учёту возмущающего действия Юпитера и Сатурна на движение кометы Галлея. Успехи теории Ньютона в решении задач небесной механики увенчались открытием планеты Нептун (1846), основанным на расчётах возмущений орбиты Юпитера (У. Леверье и Дж. Адамс).

Вопрос о природе тяготения во времена Ньютона сводился, в сущности, к проблеме взаимодействия, т. е. наличия или отсутствия материального посредника в явлении взаимного притяжения масс. Не признавая картезианских воззрений на природу тяготения, Ньютон, однако, уклонился от каких-либо объяснений, считая, что для них нет достаточных научно-теоретических и опытных оснований. После смерти Ньютона возникло научно-философское направление, получившее название ньютонианства, наиболее характерной чертой которого были абсолютизация и развитие высказывания Ньютона: «гипотез не измышляю» («hypotheses non fingo») и призыв к феноменологическому изучению явлений при игнорировании фундаментальных научных гипотез.

Могучий, аппарат ньютоновской механики, его универсальность и способность объяснить и описать широчайший круг явлений природы, особенно астрономических, оказали огромное влияние на многие области физики и химии. Ньютон писал, что было бы желательно вывести из начал механики и остальные явления природы, и при объяснении некоторых оптических и химических явлений сам использовал механические модели. Влияние взглядов Ньютона на дальнейшее развитие физики огромно. «Ньютон заставил физику мыслить по-своему, «классически», как мы выражаемся теперь… Можно утверждать, что на всей физике лежал индивидуальный отпечаток его мысли: без Ньютона наука развивалась бы иначе» (Вавилов С. И., Исаак Ньютон, 1961, с. 194, 196).

Материалистические естественнонаучные воззрения совмещались у Ньютона с религиозностью. К концу жизни он написал сочинение о пророке Данииле и толкование Апокалипсиса.

На русский язык переведены все основные работы Ньютона.

Источник: Математический энциклопедический словарь. М., Сов. энциклопедия, 1988.

В фонде библиотеки имеются следующие издания:

Чтобы просмотреть карточку, кликните по маленькому изображению внизу

Видео-материалы

ИДЕИ И. НЬЮТОНА И К. ЛИНЕЯ

Жизненный путь Исаака Ньютона

Было бы правильно сказать,

Что Ньютон не только привел

В порядок всю совокупность

Известных в то время данных,

Но и приписать его гению

Изумительную способность предвидеть

Последующие открытия и дальнейшее

Развитие науки

Н.Бор

Исаак Ньютон родился 4 января 1643 года в семье небогатого фермера. Его детство проходило в деревне Вулсторп недалеко от городка Грантем, где он учился в общественной школе. Воспитывала его бабушка, так как отец незадолго до его рождения умер, и мать, вторично выйдя замуж, уехала из деревни. Казалось, судьба уготовила Ньютону жизнь фермера, но стремление к знаниям, увлечение математикой, неожиданно проснувшееся в нем в школьные годы, обратил на себя внимание школьного учителя и родственников. В старости Ньютон вспоминал, что его любимым делом тогда было мастерить разные механические игрушки, солнечные часы, а в 1658 году он проделал свой первый физический эксперимент: измеряя дальность прыжка по направлению ветра и против, сумел определить силу ветра во время бури. Родственники уговорили мать Исаака не припятствовать его дальнейшему образованию, и в 1661 году он был принят в Тринити-колледж на правах субсайзера-бедного студента в обязанности которого входило также прислуживание членам колледжа и » действительным » студентам. Знаменитый колледж, основанный в 1546 году за 400 лет существования сыграл громадную роль в развитии английской культуры и науки.

Выдающиеся способности и прилежание Ньютона позволили ему быстро пройти все ступеньки ирархической лестницы академических знаний. В 1669 году он получил почетную Люкасовскую кафедру и читал в Кембриджском университете лекции по оптике и математеке. Все остальное время молодой учитель посвящал научным исследованиям. Это самый плодотворный период в жизни Ньютона, в течении которого были сделаны почти все его основные открытия. Особенно результативным были почти два года его вынужденного прибывания в родной деревне Вулсторп (1665-1667) во время страшной эпидемии чумы, охватившей всю Англию. Именно здесь он создает свою первокласную оптическую лабораторию и проводит первые эксперименты по разложению света в призмах, разрабатывает основные теории » флюксий »-дифференциальное и интегральное исчисление, раздумывает о всемирном тяготении и получает закон уменьшения силы тяжести с растоянием. Но мир узнает обо всех этих открытиях два десятка лет спустя. Ньютон был человеком очень осторожным, не выносившим торопливости в работе.

В 1668 году в результате большого и увлеченного труда, в котором проявилось искусство Ньютона как химика и металлурга, была изготовлена модель телескопа нового типа . Первый телескоп-рефлектор имел диаметр зеркала всего 2,5 см и длину 15 см , но этот крохотный инструмент мог давать изображение не хуже громоздких телескопов с линзами. Благодаря этому изобретению имя Ньютона становится известным и в январе 1672 года его избирают в Лондонское Королевское общество. Через гол на заседании общества он зачитывает свой мемуар » Новая теория света и цветов », в котором изложены его гениальные экспериментальне исследования по дисепсии света. Мемуар был составлен ученым на основе лекции по оптике, которые он читал в 1669-1671 годах студентам Кембриджа. Его совершенно новая, революционная теория о цветах, построеная на основе убедительных экспериментов, полностью отвергла старые воззрения о свете и цвете, идущие еще от Аристотеля. Согласно этим воззрениям, разные цвета света объяснялись различными пропорциями между светом и тенью, взаимодействием света с вещесвом. Ньютон первым показал, что реально существуют монохромотические лучи разной цветности и белый, обычный свет есть смесь этих лучей.

В конце 1675 года Ньютон присылает в Королевское общество еще один оптический мемуар, в котором описывает знаменитые опыты, приведшие к открытию так называемых колец Ньютона. На основании этих опытов ученый делает вывод о » периодичности » в распространении свеета. В переписке с Гуком-сторонником волновой природы света-Ньютон анализирует все преимущества и недостатки волновой концепции и склоняется к некоторым дуализму природы света, предвосхищая основную идею квантовой физики. Однако он не развивает своих гипотез о природе света. Ему ближе была имиссионная теория, позволявшая просто объяснить закон прямолинейного распространения света. Это дало основание ученикам и последователям Ньютона считать его основоположником корпускулярной теории света, и авторитет великого ученого искусственно сдерживал развитие волновой оптики вплоть до появления работ Юнга и Френеля.

Болезненно воспринимая любую критику своих работ, Ньютон решает не публиковать сочинений по оптике . И его » Оптика», в которой он собрал все свои исследования световых явлений, выходит лишь в 1704 году, через год после смерти Р.Гука-основного критика и притендента на многие открытия Ньютона. Эта книга и в настоящее время служит образцом описания тонкого и измуного физического эксперимента, а опыты с призмой стали классическими и неизменно демонстрируются на уроках физике.

Оптика Ньютона

Тематика наблюдения у Ньютона не очень обширна, выбраны очень простые объекты ( волос, полуплоскость, прямоугольная и клиновидные щели ) чтобы действие побочных факторов не мешало выяснению основных причин явления. В первых двух книгах » Оптики » » предложения » и »наблюдения » всюду разделяются либо в начале следует четко сформулированный тезис, а затем он доказывается опытами, либо этот тезис появляется на основе анализа предшествующих наблюдений.

Втретьей книге изложение построено по-иному. Формально здесь вообще нет » предложений ». Этим Ньютон, видимо хотел подчеркнуть отсутствие полной ясности в вопросе, которое, по его мнению, объясняется недостатком экспериментальных данных: » Производя предыдущие наблюдения,я намеривался повторить большинство из них с большей тщательностью и точностью и сделать некоторые новые наблюдения для определения способа, каковым лучи света изгибаются при их прохождении около тел, сосдавая цветные каемки с темными линиями между ними. Но я был тогда прерван, и не могу теперь думать о том, чтобы приняться за дальнейшее рассмотрение этих предметов. Ввиду того , что я не завершил этой части моего плана, я закончу предложением только нескольких вопросов для дальнейшего исследования, которое произведут другие ».

При чтении третьей книги » Оптики » очень трудно освободитьсяы от ощущений , что все дифракционные опыты ставились по заранее продуманному плану после того, как была сформулирована теория этих опытов. Исследователь творчества Ньютона лорд Кейне однажды сказал о Ньютоне:» Я подозреваю, что его эксперименты были всегда средством не длы открытия, а только для проверки того, что он уже знал » .

Механика Ньютона

От оптических исследований ученый постепннно переходит к проблемам механики. Первые идеи о всемирном тяготении появляются у него во время

» вулсторпского отпуска ». Именно к этому периоду относится знаменитая легенда о » ньютоновском яблоке», и падение которого озарило ученого. К проблеме обоснования кеплеровских законов движения планет Ньютон в дальнейшем подхолит неоднократно: в 1679 году его стимулирует к этому письмо Р. Гука, а в 1684 году, когда были получены более точные данные о размерах Земли, растояние от Земли до Луны и обоснование эллиптичесих орбит стало жгучей проблемой дня, друг ученого астроном Э.Галлей настойчиво требует от Ньютона окончательного решения. В 1687 году благодаря усилиям Галлея выходит в свет книга Ньютона под названием » »Математические начала натуральной философии »

В истории естесвознания не было события более крупного, чем появления » Начал Ньютона…Ньютоново учение о пространсве времени, массах и силах давало общую схему для решения любых конкретных задач механики, физики и астрономии. Величественный пример системы мира, разобранный Ньютоном, увенчанный открытием всемирного тяготения, увлекал науку на этот новый путь, на применение ньютоновой схемы ко всем разделам физики. Возникла » классическая физика » по образу и подобию » »Начал» .*

Его » метод принципов », глубоко реализованный в отмеченных физических работах, заключается в следующем. На основе опыта формулируется наиболее общие закономерности-аксиомы или так называемые принципы, и из них дедуктивным путем выводится отдельные зконы и положения, которые должны быть проверены на опыте . Согласие с опытом этих следствий служит гарантией справедливости основных положений теории. Этот путь построения физического знания оказался необычайно плодотворным, и все последующие великие теории ( электродинамика, термодинамика, теория относительности, квантовая теория-Бура ) построенны именно так.

Свой метод Ньютон противопоставил господствовавшему тогда в естествознании стремлению во что бы то ни стало объяснить явления даже спомощью не обоснованных опытом гипотез, догадок и спекуляции . Ньютон полагал, что на такой основе построить истинную физическую теорию нельзя. Если на данном этапе нет возможности объяснить причины, то следует ограничиться установлением из экспериментов реальной закономерности. Отсюда его решительная кредо : » Все же, что не выводится из явлений, должно называться гипотезою; гипотезом же метофизическим, физическим, механическим, скрытым свойствам не место в экспериментальной философии,-пишет он в » Общем поучении » второго издания » Начал ».

*Вавилов о трудах Ньютона- Г.М.Голин »Классики физической науки »

Теория тяготения Исаака Ньютона

С именем Ньютона связано открытие или окончательная формулировка основных законов динамики: закона инерции, пропорциональности между колличетсвом движения mv и движущей силы .

Равенство по величине и противоположности по направлению сил при центральном характере взаимодействия. Вершиной науки Ньютона стала его теория тяготения и провозглашение первого действительно универсального закона природы-закон всемирного тяготения.

В 1666 году у Ньютона возникает идея всемирного тяготения, его родство с силой тяжести на Земле и идея о том, каким образом можно вычислить силу тяготения. Доказание тождества силы тяжести на Земле и идея о том, каким образом можно вычислить силу тяготенияю. Доказание тождества силы тяжести на земле Ньютон проводит на основе вычисления центростремительного ускорения Луны в ее обращении вокруг Земли, уменьшив это ускорение пропорционально квадрату расстояния Луны от Земли, он устанавливает, что оно равно ускорению силы тяжести у земной поверхностию. Обобщая эти результаты, Ньютон сделал вывод, что для всех планет имееи место притяжение к Солнцу, что все планеты тяготеют друг к другу с силой, обратно пропорциональной квадрату расстояния между ними. Далее Ньютон выдвинул тейзис, в соответствии с которым сила тяжести пропорциональна лишь количесву материи ( массе ) и не зависит от формы материала и других свойств тела. Развивая это положение, Ньютон формулирует закон всемирного тяготения .

Древняя идея взаимного стремления тел друг к другу ( » любви » ) благодаря Ньютону освободилось от антропоморфности и таинственности. В теории Ньютона тяготение предстало как универсальная сила, которая появляется между любыми материальными частицами независимо от их конкретных качеств и состава, всегда пропорциональна их массам и обратно пропорциональна квадрату расстояния между ними. Ньютон показал неразрывную связь, взаимообусловленность законов Кеплера и закона изменения действия силы тяготения обратно пропорционально квадрату расстояния. Законы движения планет представляли как следствия закона всемирного тяготения. Причину и природу тяготения Ньютон не считал возможным обсуждать, не имея на этот счет достаточного количества фактов.

Космология Ньютона

Несмотря на свой знаменитый девиз » Гипотез не измышляю ! », Ньютон как мыслитель крупнейшего масштаба не мог не задумываться и над общими проблемами мироздания. Так, в частности, он распространил свою теорию тяготения на проблемы космологии.

Но и здесь он был не склонен давать волю фантазии и стремился анализировать прямые логические следствия из уже установленных законов. Распространив закон тяготения, подтвержденный тогда лишь для Солнечной системы, на всю Вселенную, Ньютон рассмотрел главную космологическую проблему: конечна или бесконечна Вселенная. Вопрос выглядел так: в каком случае возможно гравитирующая Вселенная, когда она конечна или когда она бесконечна? Он пришел к выводу, что лишь в случае бесконечности Вселенной материя может существовать в виде множества космических объектов-центров гравитации. В конечной вселенной материальные тела рано или поздно слились бы в единое тело в центра мира. Это было первое строгое физико-теоритическое обоснование бесконечности мира.

Ньютон задумывался и над проблемой происхождения упорядоченной Вселенной . Однако здесь он столкнулся с задачей, для решения которой еще не располагал научными фактами. Он первым отчетливо осознал, что одних только механических свойств материи для этого не достаточно. Ньютон критиковал концепции атомистов и картезианцев, справедливо утверждая, что только из одних неупорядоченных механических движений частиц не могла возникнуть вся сложная организация мира. Он считал, что материя сама по себе пассивна и не способна к движению. И потому, например, для него тайной являлось начало орбитального движения планет. Для раскрытия этой тайны оставалось прибегнуть лишю к некой более могучей, чем тяготение силе-к Богу. Поэтому Ньютон вынужден был допустить божественный » первый толчок », благодаря которому планеты приобрели орбитальное движение, а не упали на Солнце. Понадобилось всего пол века для того, чтобы в естесвознании сформулировалась идея естественной эволюции материи, опровергающая божестенный » первотолчок ».

Завершение деятельности Ньютона

Творчесво Ньютона не ограничивается физикой, математикой и химической технологией. Однако его работы по хранологии и богословию, написанные в конце жизни, не несуи на себе печати ньютоновского гения. Ньютон много сил и времени отдал изучению истории христианства, разработке теологических вопросов хронологии. Интерес к таким проблемам не удивителен, если вспомнить, в какое бурное время жил Ньютон.

В результате напряженного умственного труда происходит срыв психики ученого и в течении нескольких лет ( 1690-1693 ) он оказывается нетрудоспособным.

Согласно преданию, психическое расстройство произошло после пожара в доме Ньютона, в результате которого погибли его рукописи по оптике и механике.

Последние 30 лет жизни Ньютона прошли в октивной административной деятельности, в атмосфере обеспеченности, почета и громкой славы. Он-депутат парламента, главный директор Монетного двора, с 1703 года –президент Королевского общества, в 1705 году королева делает его » сэром Исааком ». Почти до самой смерти (31 марта 1727 года) он был абсолютно здоров и активен, несмотря на то, что родился преждевременно и был настолько хилым и балезненным ребенком, что домашние считали его не жильцом на этом свете. Аскетичный образ жизни, скромность и умеренность во всем позволили ему прожить долгую жизнь, полностью отданую науке. Сам Ньютон понимал, что все, созданное им, не есть окончательная победа разума над силами природы, что познание мира бесконечо: » Не знаю, чем я могу казаться миру, но сам себе я кажусь только мальчиком, играющем на морском берегу, развлекающимся тем,что до поры до времени, отыскиваю камешек более цветистый, чем обыкновенно, или красивую раковину, в то время как великий океан истины расстилается передомной неисследованным».

Линей, его жизнь и идеи

Шведский естествознатель член Парижской АН ( 1762 ). Получил мировую известость благодаря сосданой им системе растительного и животного мира. Родился в семье деревенского пастора. Изучал естествознание и медицинские науки в Лундском (1727)и Упсальском ( с 1728 ) университетах . В 1732 совершил путешествие по Лапландии, результатом которого явился труд »Флора Лапландии». В 1735 переехал в город Хартекамг ( Голландия ), где заведовал батоническим садом, защитил докторскую диссертацию » Новая гипотеза перемежающихся лихорадок ». В том же году опупликовал книгу »система природы». С 1731 занимался в Стокгольме врачебной практикой, в 1739 возглавил морской госпиталь, добился права вскрывать трупы с целью определения причины смерти. Участвовал в создании шведской АН и стал ее первым президентом ( 1739 ). С 1741 руководитель кафедры в Упсальском университете, в котором преподавал медицину и естествознаниею. Линей способствовал широкому введению естественных наук в систему университетского боразования.

Созданная Линеем система растительного и животного мира завершила огромный труд ботанику и зоологов первой половины 18 века. Одна из главных заслуг Линея в том, что в » Системе природы » он применил и ввел в употребление так называемую бинарную номенклатуру, согласно которой, каждый вид обозначается двумя латинскими названиями-родовым и видовым. Линей орпеделил понятие » вид », пользуясь как морфологическими так и сходство в пределах потомства одной семьи ) так и физиологическими (наличие плодовитого потомства) критериями, и установил четкое соподчинение между систематическими категориями: класс, отряд, род ,вид, вариация.

В основу классификации растений Линей положил число, величину и расположение тычинок и пестиков цветка, а также признак одно-,дву- или многоданности растения, так как считал, что органы размножения-самые существенные и постоянные части тела у растений. На основе этого принципа он делил все растения на 24 класса. Благодаря простоте примененной им номеинклатуры значительно облегчились описательные работы, виды и получили четкие характеристики и названия. Сам Линей открыл и описал около 1500 видов растений.

Всех животных Линей делил на 6 классов: млекопитающие, птицы, амфибии, рыбы, черви и насекомые. В класс амфмбий входили земноводные и пресмыкающиеся, к классу червей он отнес все известные в его время формы беспозвоночных, кроме насекомых. Одно из достоинств этой классификации в том, что человек был включен в систему животного царства и отнесен к классу млекопитающих,к отряду приматов. Классификации растений и животных, предложенные Линеем с совраменной точки зрения искуственны, так как они основаны на небольшом числе произвольно взятых признаков и не отражают действительности родства между разными формами. Так, на основании одного лишь общего признака- строения клюва-Линей относил страуса,павлина икурицу к одному отряду. Создавая искственность своей системы, Линей пытался построить » естественную» систему основанную на совокупности многих признаков, но не достиг цели.

Линей был противником идеи исторического развития мира, он считал, что число видов остается постоянным, со времени их » сотворения » они не изменились, а потому задача систематики-раскрытие порядка в природе, установленного » творцом ». Однако огромный опыт, накопленный Линеем, его знакомство с растениями из различных местностей не могли не поколебать его метафизических представлений. В последних трудах Линей в очень осторожной форме высказывал предположение, что все виды одного рода. Составляли в начале один вид, и допускал возможность появления новых видов, образовавшихся в результате скрещиваний между уже существовавшими видами.

Линей классифицировал также почвы и минералы, человеческие рассы, болезни ( по симптомам ), открыл ядовитые и целебные свойства многих растений. Линей-автор ряда трудов, главным образом по ботанике и зоологии, а также в области теоритической и практической медицины (»Лекатстенные вещевства», »Роды болезней», »Ключ к медицине»).

Библиотеки, рукописи и коллекции Линея были проданы его вдовой английскому ботанику Смиту, который основал ( 1788 ) в Лондоне »Линневское общество», существующее и ныне как один из крупнейших научных центров.

Карл Линей своей искуственной классификацией ( в единственно возможной тогда форме ) подытожил длительный исторический период эмпирического накопления биологических знаний. Вместе с тем Линей осваивал ограниченность искуственной системы и ее возможности. »Искуственная система-писал он-служит только до тех пор, пока не найдено естественное. Первая учит только распознавать растения. Вторая научит нас познать природу самого растения ».* Естественная система есть идеал, к которому должны стремиться ботаника и зоология. »Естественный метод есть последняя цель ботаники »,-отличал Линей,** его способность в том, что он включает все возможные признаки. Он приходит на помощь всякой системе, закладывает основания для новых систем. Неизменный сам по себе, он стоит непоколебимо, хотя открываются все новые и новые бесконечные роды. Благодаря открытию новых видов, он лишь совершенствуется путем устранения излишних примет.»*** То, что Линей называет »естественным методом », есть, в сущности, некоторая фундаментальная теория живого.

*Цитата по: Амлинский И.Е.»Филофофия ботаники» Линея:содержание и критический анализ\\Идея развития в биологии. Москва, 1965

**Там же стр. 33

***Цитата по:Амлинскому И.Е.

Вывод

Карл Линей и Исаак Ньютон внесли огромнейший вклад в наук. Не зря их имена мы слышим в учебных заведениях. О их творчетсве можно говорить очень много, но мне хотелось бы отметить, что замечательные математические и астрономические работы Ньютона были лишь средством для раскрытия физических закономерностей. Он сумел заложить фундамент классической физики-великого научного знания, простоявшего почти вплоть до 20 века, когда теория относителоности и квантовая механика указали границы ее применения.

Нельзя ни сказать о его математических достижениях, без которых не было бы и его гениальной теории тяготения. Свой метод рассчета механических движений на основе бесконечно малых приращений величин-характеристик исследуемых движений Ньютон назвал методом флюксий и описал его в сочинении »Метод флюксий и бесконочных рядов с приложением его к геометрии кривых ».

Величие Ньютона не только в том, что он создал подлинные шедевры классической науки, такие как » Математические начала натуральной филофофии », » Оптика » и мемуары о дифферинциальном и интегральном исчислении, но и в том, что он разработал метод научного исследования физических явлений, то, что мы сейчас называем » физическим мышлением »

Историческая же заслуга Линея в том, что через создание искуственной системы он подвел биологию к необходимости рассмотрения колоссального эмпирического материала с позиций общих теоритических принципов, поставил задачу его теоритической рационализации.

Список литературы

1 В.М. Найдыш » Концепция Современного Естесвознания ». Москва 1999 г.

2 Е.Н. Погребысская » Оптика Ньютона » Издательство » Наука » Москва 1981 г.

Сэр, английский математик, механик, оптик, философ, государственный деятель; член и президент Лондонского королевского общества, член Парижской АН, пэр Англии.

Один из соз­да­те­лей ма­те­ма­тич. ана­ли­за, от­крыв­ше­го но­вую эпо­ху в ко­ли­че­ст­вен­ном опи­са­нии при­род­ных яв­ле­ний. Раз­ра­бо­тал ос­но­вы клас­сич. ме­ха­ни­ки, фи­зич. оп­ти­ки.

Жизнь и дея­тель­ность. Н. рос в за­жи­точ­ной фер­мер­ской се­мье. Его отец умер до ро­ж­де­ния сы­на, Н. по­лу­чил имя от­ца – Иса­ак. Мать вто­рич­но вы­шла за­муж за свящ. Б. Сми­та, к ко­то­ро­му пе­ре­еха­ла, ос­та­вив Н. на вос­пи­та­ние сво­им ро­ди­те­лям – М. и Дж. Ас­кью. В 1661, по­сле окон­ча­ния сред­ней шко­лы и при под­держ­ке её ди­рек­то­ра, Н. был на­прав­лен в Три­ни­ти-кол­ледж Кем­бридж­ско­го ун-та, где в 1665 по­лу­чил сте­пень ба­ка­лав­ра, в 1668 – сте­пень ма­ги­ст­ра, в 1669 стал проф. ка­фед­ры ма­те­ма­ти­ки.

С авг. 1665 по март 1667 ун-т был за­крыт из-за эпи­де­мии чу­мы. Вы­ну­ж­ден­ные ка­ни­ку­лы Н. про­во­дил в име­нии ма­те­ри, раз­мыш­ляя об ос­но­вах ма­те­ма­тич. ана­ли­за, раз­ра­ба­ты­вая тео­рию уда­ра и про­во­дя ис­сле­до­ва­ния в об­лас­ти оп­ти­ки. В 1668 он соз­дал пер­вый те­ле­скоп- реф­лек­тор, кон­ст­рук­цию ко­то­ро­го смог су­ще­ст­вен­но улуч­шить к 1671. Это изо­бре­те­ние при­нес­ло ему ме­ж­ду­нар. сла­ву и ста­ло ос­но­ва­ни­ем для из­бра­ния в ЛКО, член­ст­во в ко­то­ром по­зво­ли­ло опуб­ли­ко­вать ре­зуль­та­ты сво­их ис­сле­до­ва­ний в 1672 в ст. «Но­вая тео­рия све­та и цве­тов» («New theory about light and co­lours») в ж. «Philosophical Transactions», из­да­вае­мом ЛКО.

С сер. 1670-х гг. Н. пол­но­стью пре­кра­тил за­ня­тия ес­теств. нау­ка­ми, от­ка­зал­ся от вся­кой на­уч. пе­ре­пис­ки и кон­так­тов с кол­ле­га­ми по ЛКО, пол­но­стью по­свя­тив се­бя ал­хи­мии, тео­ло­гии и биб­лей­ской ис­то­рии. Бу­ду­чи офи­ци­аль­но чле­ном Анг­ли­кан­ской церк­ви, Н., од­на­ко, в ре­зуль­та­те сис­те­ма­тич. изу­че­ния Биб­лии, тру­дов ран­них от­цов Церк­ви и ис­то­рии ари­ан­ских спо­ров (см. Ари­ан­ст­во) под­верг кри­ти­ке дог­мат Трои­цы, счи­тая, что лат. пе­ре­во­ды Свя­щен­но­го Пи­са­ния бы­ли ис­ка­же­ны в поль­зу три­ни­тар­но­го тол­ко­ва­ния по срав­не­нию с греч. ори­ги­на­ла­ми.

По­во­дом для воз­вра­ще­ния к на­уч. за­ня­ти­ям по­слу­жи­ло пись­мо, по­лу­чен­ное в 1679 от Р. Гу­ка, ко­то­рый пред­ло­жил Н. при­нять уча­стие в об­су­ж­де­нии за­дач, за­ни­мав­ших ЛКО. К та­ким за­да­чам, в ча­ст­но­сти, от­но­си­лась за­да­ча о дви­же­нии сво­бод­но па­даю­ще­го тя­жё­ло­го те­ла.

В 1684 в Кем­бридж прие­хал Э. Гал­лей, что­бы об­су­дить с Н. воз­мож­ность вы­ве­де­ния Ке­п­ле­ра за­ко­нов из об­щих прин­ци­пов ме­ха­ни­ки. Н. зая­вил, что эта за­да­ча бы­ла ре­ше­на им ещё 4 го­да на­зад, и чуть позд­нее при­слал Гал­лею 9-стра­нич­ный трак­тат «О дви­же­нии тел по ор­би­те» («De Motu Corporum in Gy­rum»). По­няв, что име­ет де­ло с ге­ни­аль­ным со­чи­не­ни­ем, Гал­лей пы­тал­ся скло­нить Н. к из­да­нию ра­бо­ты. Од­на­ко Н. не со­гла­шал­ся на ско­рое из­да­ние, про­дол­жая упор­ную ра­бо­ту над про­бле­мой. За 3 го­да 9-стра­нич­ный трак­тат пре­об­ра­зил­ся в фун­дам. труд «Ма­те­ма­ти­че­ские на­ча­ла на­ту­раль­ной фи­ло­со­фии» («Philosophiae naturalis principia mathematica», опубл. в 1687), в ко­то­ром за­ко­ны при­ро­ды бы­ли сфор­му­ли­ро­ва­ны язы­ком ма­те­ма­ти­ки. 1-е из­да­ние «На­чал…» вы­шло в 1687, от­крыв но­вый пе­ри­од в ис­то­рии нау­ки. Б. ч. хло­пот по под­го­тов­ке из­да­ния взял на се­бя Гал­лей.

В 1689 Н. был в пер­вый раз из­бран в пар­ла­мент (от Кем­бридж­ско­го ун-та) и за­се­дал там не­мно­гим бо­лее го­да. 1690-е гг. в жиз­ни Н. бы­ли от­ме­че­ны твор­че­ским и об­щим спа­дом; он мно­го бо­лел и пол­но­стью ото­шёл от ис­сле­до­ва­тель­ской ра­бо­ты. Од­на­ко на ру­бе­же 17–18 вв. Н. на­шёл се­бя в но­вом де­ле: в 1696 он пе­ре­брал­ся в Лон­дон и стал смот­ри­те­лем мо­нет­но­го дво­ра, а в 1699 его ди­рек­то­ром. Столь не­ожи­дан­ное на­зна­че­ние бы­ло свя­за­но с тем, что у Н. поя­ви­лись вы­со­ко­по­став­лен­ные по­кро­ви­те­ли (сре­ди них – бу­ду­щий пре­мьер-ми­нистр Ч. Мон­тегю граф Га­ли­факс и Дж. Локк). В этой долж­но­сти Н. до­бил­ся при­ве­де­ния в по­ря­док рас­стро­ен­ной фи­нан­со­вой сис­те­мы стра­ны и пре­одо­ле­ния по­след­ст­вий гло­баль­но­го кри­зи­са. Ос­тав­шие­ся го­ды он про­вёл, за­ни­ма­ясь де­ла­ми ЛКО и пуб­ли­куя свои ру­ко­пи­си. В 1704 был из­дан боль­шой трак­тат «Оп­ти­ка или трак­тат об от­ра­же­ни­ях, пре­лом­ле­ни­ях, из­ги­ба­ни­ях и цве­тах све­та» («Opticks, or A treatise of the reflexions, refractions, inflexions and colours of light», опубл. на англ. язы­ке, в от­ли­чие от пре­ды­ду­щих тру­дов, на­пи­сан­ных на ла­ты­ни), в 1713 под­го­тов­ле­но 2-е из­да­ние «На­чал…» (3-е из­да­ние, по­след­нее при жиз­ни Н., уви­де­ло свет в 1726). В 1701–02 Н. вновь за­се­дал в пар­ла­мен­те. В 1703 Н. стал пре­зи­ден­том ЛКО, в 1705 по­лу­чил ти­тул лор­да. По­хо­ро­нен в Вест­мин­стер- ском аб­бат­ст­ве.

Ра­бо­ты в об­лас­ти ма­те­ма­ти­ки. Ма­те­ма­ти­ка для Н. бы­ла гл. ин­стру­мен­том в фи­зич. изы­ска­ни­ях; он счи­тал, что по­ня­тия ма­те­ма­ти­ки воз­ни­ка­ют как аб­страк­ции яв­ле­ний и про­цес­сов ре­аль­но­го ми­ра. Раз­ра­бот­ка Н. диф­фе­рен­ци­аль­но­го и ин­те­граль­но­го ис­чис­ле­ний яви­лась важ­ней­шим эта­пом раз­ви­тия ма­те­ма­ти­ки. Осн. идеи флюк­сий ис­чис­ле­ния сло­жи­лись у Н. в 1665–66 под влия­ни­ем его пред­ше­ст­вен­ни­ков и со­вре­мен­ни­ков.

В ис­ход­ных по­ня­ти­ях и тер­ми­но­ло­гии ме­то­да флюк­сий от­ра­зи­лось влия­ние идей, раз­ви­тых ря­дом учё­ных 17 в. – Б. Ка­валь­е­ри, П. Фер­ма, Дж. Вал­ли­сом; в этих по­ня­ти­ях от­чёт­ли­во про­яви­лась связь ме­ж­ду ма­те­ма­тич. и ме­ха­нич. ис­сле­до­ва­ния­ми. По­ня­тие не­пре­рыв­ной ма­те­ма­тич. ве­ли­чи­ны Н. ввёл как аб­ст­рак­цию от разл. ви­дов не­пре­рыв­но­го ме­ха­нич. дви­же­ния. Ли­нии мож­но по­лу­чать дви­же­ни­ем то­чек, по­верх­но­сти – дви­же­ни­ем ли­ний, те­ла – дви­же­ни­ем по­верх­но­стей, уг­лы – вра­ще­ни­ем сто­рон, и т. д. Не­пре­рыв­ные пе­ре­мен­ные ве­ли­чи­ны Н. на­звал флю­ен­та­ми (те­ку­щи­ми ве­ли­чи­на­ми, от лат. fluo – течь). Об­щим ар­гу­мен­том разл. те­ку­щих ве­ли­чин – флю­ент – у Н. яв­ля­ет­ся «вре­мя», по­ни­мае­мое фор­маль­но как не­кая от­вле­чён­ная рав­но­мер­но те­ку­щая ве­ли­чи­на, к ко­то­рой от­не­се­ны про­чие за­ви­си­мые пе­ре­мен­ные. Флю­ен­та – из­ме­няю­щая­ся со вре­ме­нем ве­ли­чи­на, из­ме­не­ние ко­то­рой мож­но изо­бра­зить ли­ни­ей в де­кар­то­вых ко­ор­ди­натах. Ско­ро­сти из­ме­не­ния флю­ент Н. на­звал флюк­сия­ми, а не­об­хо­ди­мые для вы­чис­ле­ния флюк­сий бес­ко­неч­но ма­лые из­ме­не­ния флю­ент – мо­мен­та­ми (у Г. В. Лейб­ни­ца, ко­то­рый дос­тиг в диф­фе­рен­ци­аль­ном и ин­те­граль­ном ис­чис­ле­ни­ях при­мер­но тех же ре­зуль­та­тов, что и Н., поч­ти од­но­вре­мен­но и не­за­ви­си­мо от не­го, они на­зы­ва­ют­ся диф­фе­рен­циа­ла­ми). Н. вы­чис­лил (1669, опубл. в 1711) про­из­вод­ную и ин­те­грал лю­бой сте­пен­ной функ­ции. Разл. ра­цио­наль­ные, в т. ч. дроб­но-ра­цио­наль­ные функ­ции, функ­ции, со­дер­жа­щие ра­ди­ка­лы, и не­ко­то­рые транс­цен­дент­ные функ­ции (ло­га­риф­ми­че­скую, по­ка­за­тель­ную, си­нус, ко­си­нус, арк­си­нус) Н. вы­ра­жал с по­мо­щью бес­ко­неч­ных сте­пен­ных ря­дов. Ме­тод вы­чис­ле­ния и изу­че­ния функ­ций с по­мо­щью ря­дов при­об­рёл ог­ром­ное зна­че­ние для все­го ма­те­ма­тич. ана­ли­за и его при­ло­же­ний.

В кон. 1660-х гг. Н. сфор­му­ли­ровал две осн. вза­им­но об­рат­ные за­да­чи ма­те­ма­тич. ана­ли­за: 1) оп­ре­де­ле­ние ско­ро­сти дви­же­ния в дан­ный мо­мент вре­ме­ни по из­вест­но­му прой­ден­но­му пу­ти (за­да­ча диф­фе­рен­ци­ро­ва­ния), или оп­ре­де­ле­ние со­от­но­ше­ния ме­ж­ду флюк­сия­ми по дан­но­му со­от­но­ше­нию ме­ж­ду флю­ен­та­ми; 2) оп­ре­де­ле­ние прой­ден­но­го за дан­ное вре­мя пу­ти по из­вест­ной ско­ро­сти дви­же­ния (за­да­ча ин­тег­ри­ро­ва­ния диф­фе­рен­ци­аль­но­го урав­не­ния, в ча­ст­но­сти оты­ска­ния пер­во­об­раз­ной), или оп­ре­де­ле­ние со­от­но­ше­ния ме­ж­ду флю­ен­та­ми по дан­но­му со­от­но­ше­нию ме­ж­ду флюк­сия­ми. Ме­тод флюк­сий при­ме­нял­ся Н. к боль­шо­му чис­лу гео­мет­рич. во­про­сов (за­да­чи на ка­са­тель­ные, кри­виз­ны, экс­тре­му­мы, квад­ра­ту­ры, спрям­ле­ния). Н. на­ме­тил, по су­ще­ст­ву, про­грам­му по­строе­ния ме­то­да флюк­сий на ос­но­ве по­ня­тий о «по­след­них от­но­ше­ни­ях ис­че­заю­щих ве­ли­чин» или «пер­вых от­но­ше­ни­ях за­ро­ж­даю­щих­ся ве­ли­чин», не да­вая их фор­маль­но­го оп­ре­де­ле­ния и рас­смат­ри­вая их как ин­туи­тив­но оче­вид­ные. Они на­шли своё стро­гое обос­но­ва­ние в по­ня­тии пре­де­ла, раз­ви­том ма­те­ма­ти­ка­ми 2-й пол. 18 и 19 вв. (Ж. Д’Аламбер, Л. Эй­лер, О. Ко­ши и др.).

В кон. 1660-х гг. бы­ли на­пи­са­ны и др. со­чине­ния Н. по ма­те­ма­тич. ана­ли­зу, из­дан­ные зна­чи­тель­но позд­нее. Был раз­ра­бо­тан ме­тод вы­чи­сле­ния кор­ней урав­не­ния (Нью­то­на ме­тод) и один из без­ус­лов­ной ми­ни­ми­за­ции ме­то­дов. Не­ко­то­рые ма­те­ма­тич. от­кры­тия Н. по­лу­чи­ли из­вест­ность в 1670-х гг. по его ру­ко­пи­сям и пе­ре­пис­ке. Боль­шое зна­че­ние име­ли так­же его ра­бо­ты по ал­геб­ре, гео­мет­рии и ин­тер­по­ля­ции. При ре­ше­нии мн. ма­те­ма­тич. за­дач ис­поль­зу­ет­ся Нью­то­на би­ном.

Ра­бо­ты в об­лас­ти ме­ха­ни­ки. Сфор­му­ли­ро­вав 3 ак­сио­мы ди­на­ми­ки (Нью­то­на за­ко­ны ме­ха­ни­ки) и до­пол­нив их все­мир­но­го тя­го­те­ния за­ко­ном, Н. за­ло­жил ос­но­ва­ния тео­ре­тич. ме­ха­ни­ки и пред­оп­ре­де­лил пу­ти её раз­ви­тия на по­сле­дую­щие 200 лет. Он ввёл осн. по­ня­тия ме­ха­ни­ки: мас­са, си­ла, ко­ли­че­ст­во дви­же­ния и др. Ме­ха­ни­ка, опи­раю­щая­ся на по­ло­же­ния, вы­дви­ну­тые Н., на­зы­ва­ет­ся клас­си­че­ской или нью­то­нов­ской. Поль­зу­ясь пре­им. гео­мет­рич. ме­то­да­ми, Н. по­ка­зал, что тра­ек­то­рия ма­те­ри­аль­ной точ­ки в сфе­ри­че­ски-сим­мет­рич­ном цен­траль­ном по­ле бу­дет пред­став­лять со­бой пло­скую кри­вую, при­чём за рав­ные про­ме­жут­ки вре­ме­ни ра­ди­ус-век­тор бу­дет за­ме­тать рав­ные уг­лы (т. е. бу­дет вы­пол­нять­ся 2-й за­кон Ке­п­ле­ра).

Н. рас­смот­рел так­же дви­же­ние ма­те­ри­аль­ной точ­ки в со­про­тив­ляю­щей­ся сре­де, про­во­дя раз­ли­чие ме­ж­ду су­хим тре­ни­ем, при ко­то­ром си­ла тре­ния не за­ви­сит от ско­ро­сти дви­же­ния, и вяз­ким, при ко­то­ром си­ла тре­ния про­пор­цио­наль­на ско­ро­сти или её квад­ра­ту. Пе­ре­хо­дя от этих за­дач к дви­же­нию сре­ды как та­ко­вой, Н. дал од­ну из пер­вых оце­нок ско­ро­сти зву­ка в уп­ру­гой сре­де, фак­ти­че­ски по­ло­жив на­ча­ло фи­зич. аку­сти­ке. При этом он вос­поль­зо­вал­ся ана­ло­ги­ей ме­ж­ду дви­же­ния­ми уп­ру­гой сре­ды и фи­зич. ма­ят­ни­ка. Н. дал но­вое ре­ше­ние за­да­чи об изо­хрон­но­сти ко­ле­ба­ний ма­ят­ни­ка, по­ка­зав, что для то­го, что­бы пе­ри­од ма­ят­ни­ка не за­ви­сел от ам­пли­ту­ды, ко­нец ма­ят­ни­ка дол­жен дви­гать­ся по цик­лои­де.

Н. про­во­дил ис­сле­до­ва­ния по тео­рии уда­ра, ко­то­рая в 17 в. счи­та­лась од­ной из клю­че­вых про­блем ме­ха­ни­ки. Дос­тиг­ну­тые ре­зуль­та­ты, в ча­ст­но­сти, по­зво­ли­ли Н. вы­чис­лить цен­тро­ст­ре­ми­тель­ное ус­ко­ре­ние и цен­тро­беж­ную си­лу (ре­шая эту за­да­чу, Н. за­ме­нил дви­же­ние по ок­руж­но­сти дви­же­ни­ем по пра­виль­но­му мно­го­уголь­ни­ку с уп­ру­ги­ми столк­но­ве­ния­ми в ка­ж­дой вер­ши­не). Най­ден­ное ре­ше­ние по­зво­ли­ло Н. ут­вер­ждать, что 3-й за­кон Ке­п­ле­ра бу­дет вы­пол­нять­ся в том и толь­ко в том слу­чае, ко­гда цен­тро­беж­ная си­ла убы­ва­ет об­рат­но про­пор­цио­наль­но квад­ра­ту рас­стоя­ния от цен­тра. Ре­ше­ния этих и мн. др. за­дач ме­ха­ни­ки бы­ли опуб­ли­ко­ва­ны Н. в его гл. со­чи­не­нии – «Ма­те­ма­ти­че­ские на­ча­ла на­ту­раль­ной фи­ло­со­фии».

Осо­бое ме­сто в этом тру­де за­ня­ло об­су­ж­де­ние слу­ча­ев, ко­гда за­ко­ны Ке­п­ле­ра на­ру­ша­ют­ся: рас­смот­ре­ние лун­ных ва­риа­ций, пре­цес­сии зем­ной ор­би­ты, не­сфе­рич­но­сти фор­мы Зем­ли и др. Вы­вод Н. о том, что из-за су­точ­но­го вра­ще­ния Зем­ля долж­на быть сплю­ще­на с по­лю­сов, вы­звал длин­ную и бур­ную дис­кус­сию. Окон­ча­тель­но этот вы­вод был под­твер­ждён по­сле про­ве­де­ния в 1736–37 ме­ри­дио­наль­ных из­ме­ре­ний (экс­пе­ди­ция под рук. П. Л. Мо­пер­тюи) и пуб­ли­ка­ции в 1743 тру­да А. К. Кле­ро «Тео­рия фи­гу­ры Зем­ли».

Ра­бо­ты в об­лас­ти оп­ти­ки. К осн. до­сти­же­ниям Н. в об­лас­ти оп­ти­ки от­но­сят­ся: экс­пе­рим. до­ка­за­тель­ст­во со­став­но­го ха­рак­те­ра бе­ло­го цве­та и даль­ней­шей не­раз­ло­жи­мо­сти осн. цве­тов спек­тра, по­строе­ние пер­во­го те­ле­ско­па-реф­лек­то­ра, об­на­ру­же­ние но­вых яв­ле­ний, свя­зан­ных с вол­но­вой при­ро­дой све­та (в ча­ст­но­сти, Нью­то­на ко­лец), и раз­ра­бот­ка дуа­ли­сти­че­ской тео­рии све­та.

Ин­те­рес Н. к оп­тич. яв­ле­ни­ям был вы­зван не­ко­то­ры­ми но­вы­ми эф­фек­та­ми, об­на­ру­жен­ны­ми в 17 в. Так, бла­го­да­ря раз­ви­тию ти­по­граф­ских ме­то­дов цвет­ной пе­ча­ти, опыт­ным пу­тём бы­ло ус­та­нов­ле­но, что тре­мя крас­ка­ми мож­но вос­про­из­ве­сти прак­ти­че­ски лю­бой от­те­нок цве­та. Дать объ­яс­не­ние это­му яв­ле­нию не уда­ва­лось, так же как и эф­фек­ту ок­ра­ши­ва­ния изо­бра­же­ния в зри­тель­ной тру­бе (из­вест­но­му сей­час как хро­ма­тич. абер­ра­ция).

Свои пер­вые оп­тич. опы­ты Н. про­водил с тре­уголь­ной приз­мой, по­лу­чая спек­траль­ное раз­ло­же­ние сол­неч­но­го све­та на вер­ти­каль­ной сте­не ком­на­ты. Из этих опы­тов Н. сде­лал клю­че­вой вы­вод о том, что приз­ма не ок­ра­ши­ва­ет сол­неч­ный свет, а раз­ла­га­ет его на со­став­ляю­щие. Н. по­ла­гал, что сол­неч­ный свет пред­став­ля­ет со­бой смесь лу­чей раз­ных цве­тов, при­чём «лу­чи, раз­ли­чаю­щие­ся по цве­ту, раз­ли­ча­ют­ся и по сте­пе­ни пре­лом­ле­ния», а ка­ж­до­му цве­ту от­ве­ча­ет по­ток кор­пус­кул оп­ре­де­лён­ной ско­ро­сти.

Из за­клю­че­ния об од­но­знач­ной за­ви­си­мо­сти ско­ро­сти кор­пус­кул и сте­пе­ни пре­лом­ле­ния сле­до­ва­ла, в ча­ст­но­сти, не­воз­мож­ность из­ба­вить­ся от хро­ма­тич. абер­ра­ции в те­ле­ско­пах-реф­рак­то­рах, что под­толк­ну­ло Н. к соз­да­нию прин­ци­пи­аль­но но­вой кон­ст­рук­ции те­ле­ско­па. В ре­зуль­та­те в 1668 Н. соз­дал те­ле­скоп-реф­лек­тор, в ко­то­ром эф­фект уве­ли­че­ния уда­лён­ных объ­ек­тов дос­ти­гал­ся за счёт их от­ра­же­ния в во­гну­том сфе­рич. зер­ка­ле.

Уче­ние Н. о све­те сис­те­ма­ти­зи­ро­ва­ло зна­ния той эпо­хи и по­слу­жи­ло бы­ст­ро­му про­грес­су оп­ти­ки. В то же вре­мя оно со­дер­жа­ло не­ко­то­рые оши­боч­ные по­ло­же­ния и ста­ло пред­ме­том ожес­то­чён­ной кри­ти­ки со­вре­мен­ни­ков. Так, напр., Н. по­ла­гал ди­фрак­цию раз­но­вид­но­стью реф­рак­ции и по­это­му от­ри­цал воз­мож­ность по­па­да­ния све­та в об­ласть те­ни, счи­тал, что из­ме­не­ние уг­ла пре­лом­ле­ния для лу­чей раз­ных цве­тов не за­ви­сит от свойств стек­ла. Наи­бо­лее по­сле­до­ва­тель­ная и ар­гу­мен­ти­ро­ван­ная кри­ти­ка уче­ния Н. ис­хо­ди­ла от Р. Гу­ка, ко­то­рый точ­но вос­про­из­вёл все опи­сан­ные Н. экс­пе­римен­ты, но пред­ло­жил им иную ин­тер­пре­та­цию. Час­то рас­хо­ж­де­ние тео­ре­тич. по­зи­ций Гу­ка и Н. пред­став­ля­лось как оп­по­зи­ция вол­но­вой и кор­пус­ку­ляр­ной тео­рий све­та.

Гл. слож­ность по­зи­ции Н. за­клю­ча­лась в дуа­ли­стич­но­сти его тео­рии. Свет, по его сло­вам, был по­до­бен од­но­вре­мен­но и кам­ню, бро­шен­но­му в во­ду, и вол­нам, вы­зван­ным па­де­ни­ем кам­ня и рас­хо­дящим­ся по по­верх­но­сти во­ды. Од­на­ко при­нять вол­но­вую тео­рию сво­их оп­по­нен­тов Н. не мог, т. к. не ви­дел воз­мож­но­сти объ­яс­нить в её рам­ках пря­мо­ли­ней­ность све­то­вых лу­чей (это уда­лось зна­чи­тель­но позд­нее О. Фре­не­лю). Про­ти­во­ре­чия ме­ж­ду вол­но­вой и кор­пус­ку­ляр­ной тео­рия­ми све­та бы­ли сня­ты толь­ко в 20 в. при соз­да­нии кван­то­вой элек­тро­ди­на­ми­ки.

Фи­ло­соф­ские взгля­ды. При­дер­жи­ва­ясь ус­та­но­вок брит. эм­пи­риз­ма, Н. про­ти­во­пос­та­вил «са­мо­оче­вид­ным ис­ти­нам ра­зу­ма» Р. Де­кар­та и всей ра­цио­на­ли­стич. тра­ди­ции свою на­уч. про­грам­му «экс­пе­ри­мен­таль­ной фи­ло­со­фии», опи­раю­щую­ся в ис­сле­до­ва­нии при­ро­ды пре­ж­де все­го на ре­аль­ный (не толь­ко мыс­лен­ный) экс­пе­ри­мент и ме­тод ин­дук­ции. Сфор­му­ли­ро­ван­ный в «Оп­ти­ке» ме­тод Н. за­клю­чал­ся в со­че­та­нии ана­ли­за (по­ни­мае­мо­го как «про­из­вод­ст­во опы­тов и на­блю­де­ний, из­вле­че­ние об­щих за­клю­че­ний из них по­сред­ст­вом ин­дук­ции и не­до­пу­ще­ние иных воз­ра­же­ний про­тив за­клю­че­ний, кро­ме по­лу­чен­ных из опы­та или дру­гих дос­то­вер­ных ис­тин») и син­те­за . При этом в ка­че­ст­ве та­кой об­щей при­чи­ны, по­зво­ляю­щей не толь­ко ма­те­ма­ти­че­ски опи­сать дви­же­ние как зем­ных, так и не­бес­ных тел, но и объ­яс­нить все фи­зич. яв­ле­ния в рам­ках еди­ной кар­ти­ны ми­ра, вы­сту­па­ет у Н. вве­дён­ное им по­ня­тие си­лы тя­го­те­ния, ко­то­рая, од­на­ко, вы­хо­дит за рам­ки ме­ха­ни­ки: «…при­чи­ну… свойств си­лы тя­го­те­ния я до сих пор не мог вы­вес­ти из яв­ле­ний, ги­по­тез же я не из­мыш­ляю» (Ма­те­ма­ти­че­ские на­ча­ла на­ту­раль­ной фи­ло­со­фии. М., 1989. С. 662).

Пер­во­на­чаль­но при­ро­ду тя­го­те­ния Н. объ­яс­нял с по­мо­щью ги­по­те­зы эфи­ра как «тон­чай­шей», все­про­ни­каю­щей сре­ды, в ко­то­рой воз­мож­на пе­ре­да­ча разл. сил как в не­жи­вой, так и жи­вой при­роде – гра­ви­та­ци­он­ное при­тя­же­ние, хи­мич. про­цес­сы, све­то­вые, элект­ро­ста­тич. яв­ле­ния, те­п­ло­та, звук, от­прав­ле­ния жи­во­го ор­га­низ­ма. По­ня­тие эфи­ра, вос­хо­дя­щее к пнев­ме стои­ков и ми­ро­вой ду­ше не­оп­ла­то­ни­ков, бы­ло вос­при­ня­то Н. в рус­ле эзо­те­рич. уче­ний 16–17 вв., по­лу­чив­ших рас­про­стра­не­ние в т. ч. в ал­хи­мии («жиз­нен­ный дух», spiritus mun­di и т. п.), ко­то­рой Н. за­ни­мал­ся ок. 30 лет, ис­сле­дуя воз­мож­но­сти транс­му­та­ции ме­тал­лов (со­хра­ни­лось ог­ром­ное ко­ли­че­ст­во тек­стов Н., со­дер­жа­щих кон­спек­ты ал­хи­мич. со­чи­не­ний и его ком­мен­та­рии к ним, а так­же опи­са­ния его собств. опы­тов). При этом эфир, «ми­ро­вое ды­ха­ние», Н. мыс­лил как бес­те­лес­ное бес­ко­неч­ное про­стран­ст­во, от­вер­гая вслед за Г. Мо­ром, ока­зав­шим влия­ние на мо­ло­до­го Н., ото­жде­ст­в­ле­ние ма­те­рии и про­тя­жён­но­сти (про­стран­ст­ва) у Р. Де­кар­та. В по­ле­ми­ке с Де­кар­том, ато­ми­ста­ми (П. Гас­сен­ди) и Г. В. Лейб­ни­цем Н. ввёл по­ня­тие еди­но­го, не­де­ли­мо­го, аб­со­лют­но­го про­стран­ст­ва – не­ма­те­ри­аль­но­го «вме­сти­ли­ща» все­го, что су­ще­ст­ву­ет в фи­зич. ми­ре, а так­же все­гда оди­на­ко­во­го аб­солют­но­го вре­ме­ни и аб­со­лют­но­го дви­же­ния, от­ли­чая их от вос­при­ни­мае­мых на­ши­ми чув­ст­ва­ми от­но­си­тель­ных про­стран­ст­ва, вре­ме­ни и дви­же­ния. Аб­со­лют­ное про­стран­ст­во рас­смат­ри­ва­ет­ся Н. как «чув­ст­ви­ли­ще Бо­га» (sen­sorium Dei), ко­то­рый «управ­ля­ет всем не как ду­ша ми­ра, а как вла­сти­тель все­лен­ной», Пан­то­кра­тор.

Ма­те­ма­тич. ес­те­ст­во­зна­ние Н. бы­ст­ро за­вое­ва­ло при­зна­ние в Ве­ли­ко­бри­та­нии и на­ча­ло рас­про­стра­нять­ся в Ев­ро­пе, где ему про­ти­во­стоя­ла на­уч. про­грам­ма Г. В. Лейб­ни­ца – Х. фон Воль­фа. Од­нако у нью­то­ни­ан­цев в 18 в. за­кре­пи­лось и аб­со­лю­ти­зи­ро­ва­лось пред­став­ле­ние о нью­то­нов­ской на­уч. про­грам­ме как ис­клю­чи­тель­но эм­пи­ри­че­ской, из неё, в сущ­но­сти, пол­но­стью эли­ми­ни­ро­ва­лось её фи­лос. яд­ро (так, напр., Э. Б. де Кон­диль­як и др. счи­та­ли, что прин­цип тя­го­те­ния был по­лу­чен Н. из опы­та). Ог­ром­ную роль в рас­про­стра­не­нии фи­зи­ки Н. на кон­ти­нен­те сыг­ра­ли Воль­тер и др. про­све­ти­те­ли, и, на­ря­ду с фи­ло­со­фи­ей Дж. Лок­ка, на­уч. про­грам­ма Н. ста­ла зна­ме­нем Про­све­ще­ния как в са­мой Ве­ли­ко­бри­та­нии, так и на кон­ти­нен­те, пре­ж­де все­го во Фран­ции.

Дея­тель­ность во гла­ве мо­нет­но­го дво­ра. В кон. 17 в. англ. фи­нан­со­вая сис­тема бы­ла прак­ти­че­ски раз­ру­ше­на. Но­ми­наль­ная це­на англ. де­нег ока­за­лась зна­чи­тель­но ни­же стои­мо­сти ме­тал­ла, из ко­то­ро­го из­го­тов­ля­лись мо­не­ты. Кон­тра­бан­ди­сты боль­ши­ми пар­тия­ми вы­во­зи­ли на ма­те­рик англ. се­реб­ря­ные мо­не­ты ма­шин­ной че­кан­ки (вве­дён­ные в обо­рот по­сле ре­фор­мы 1663), что­бы про­да­вать их там пе­реплав­лен­ны­ми в слит­ки. Ос­таю­щие­ся в обо­ро­те ста­рые мо­не­ты руч­ной че­кан­ки, не имев­шие на­се­чек на реб­ре, при ис­поль­зо­ва­нии те­ря­ли в ве­се (как за счёт сти­ра­ния края, так и за счёт во­ров­ст­ва ме­тал­ла). До­ве­рие к англ. ва­лю­те до­пол­ни­тель­но под­ры­ва­лось за­мет­ным вбро­сом фаль­ши­вых де­нег. Тор­гов­ля в 1690-х гг. ста­ла прак­ти­че­ски не­воз­мож­ной из-за от­сут­ст­вия де­нег, при по­мо­щи ко­то­рых её мож­но бы­ло бы вес­ти.

Для вы­хо­да из сло­жив­ше­го­ся по­ло­же­ния не­об­хо­ди­мо бы­ло про­вес­ти но­вую круп­но­мас­штаб­ную де­неж­ную ре­фор­му, в ча­ст­но­сти пе­ре­че­ка­нить всю се­реб­ря­ную мо­не­ту, изъ­яв ту, что име­ла хо­ж­де­ние в стра­не до ре­фор­мы. Имен­но эта за­да­ча и бы­ла воз­ло­же­на на Н., ко­то­ро­му уда­лось ус­пеш­но с ней спра­вить­ся. Т. к. при имев­ших­ся мощ­но­стях мо­нет­но­го дво­ра пе­ре­че­кан­ка мо­не­ты долж­на бы­ла рас­тя­нуть­ся на 9 лет, Н. на­сто­ял на за­куп­ке но­во­го обо­ру­до­ва­ния, пе­ре­хо­де к круг­ло­су­точ­но­му ре­жи­му ра­бо­ты и соз­да­нии до­пол­нит. мо­нет­ных дво­ров. Т. о., ско­рость из­го­тов­ле­ния мо­нет вы­рос­ла в 8 раз. Не­до­стаю­щее для че­кан­ки се­реб­ро за­ку­па­лось в счёт гос. дол­га. Кро­ме то­го, Н. пред­ло­жил не­сколь­ко до­воль­но эф­фек­тив­ных мер про­тив фаль­ши­во­мо­нет­чи­ков.

Рас­про­стра­не­ние идей Нью­то­на в Рос­сии. Для биб­лио­те­ки Пет­ра I был ку­п­лен эк­зем­п­ляр 1-го из­да­ния осн. тру­да Н. «Ма­те­ма­ти­че­ские на­ча­ла на­ту­раль­ной фи­ло­со­фии». По­сле смер­ти им­пе­ра­то­ра этот эк­зем­п­ляр хра­нил­ся в биб­лио­те­ке АН, а в 1787 был по­да­рен биб­лио­те­ке Моск. ун-та.

Дол­гое вре­мя ра­бо­ты Н. не пе­ре­во­ди­лись и ос­та­ва­лись зна­ко­мы толь­ко лю­дям, умев­шим чи­тать по ла­ты­ни. В 19 в., по ме­ре то­го как ла­тынь пе­ре­ста­ва­ла быть язы­ком ме­ж­ду­нар. об­ще­ния учё­ных, воз­ник­ла не­об­хо­ди­мость в пе­ре­во­дах и про­па­ган­де на­сле­дия Н. в Рос­сии. Пер­вый пе­ре­вод «На­чал…» на рус. язык был вы­пол­нен в 1916 А. Н. Кры­ло­вым.

«Оп­ти­ка» бы­ла пе­ре­ве­де­на на рус. язык С. И. Ва­ви­ло­вым и из­да­на в 1927 под за­го­лов­ком «Оп­ти­ка или трак­тат об от­ра­же­ни­ях, пре­лом­ле­ни­ях, из­ги­ба­ни­ях и цве­тах све­та», а в 1946 поя­ви­лись в том же пе­ре­во­де и «Лек­ции по оп­ти­ке». Ва­ви­лов на­пи­сал так­же пер­вую на рус. язы­ке об­стоя­тель­ную био­гра­фию Н. (1943). По ини­циа­ти­ве Ва­ви­ло­ва и при его не­по­сред­ст­вен­ном уча­стии в Ка­за­ни в 1943 про­шли за­се­да­ния, по­свя­щён­ные 300-ле­тию Н. Боль­шое зна­че­ние для отеч. нью­то­но­ве­де­ния име­ла и ме­ж­ду­нар. кон­фе­рен­ция, по­свя­щён­ная 300-ле­тию «На­чал…», про­ве­дён­ная в 1987 в Мо­ск­ве.

Сочинения:

An historical account of two notable cor­ruptions of Scripture. L., 1830;

За­ме­ча­ния на кни­гу Про­ро­ка Да­нии­ла и Апо­ка­лип­сис св. Ио­ан­на. П., 1916. М., 2011;

Вера
0

Свежие записи

  • Антиклерикальный
  • Космонавт в скафандре, фото
  • Воспитание в неполной семье
  • Церковь о домовых
  • Рассказ о школе 1 класс

Свежие комментарии

    Архивы

    • Ноябрь 2020
    • Октябрь 2020
    • Сентябрь 2020
    • Август 2020
    • Июль 2020
    • Февраль 2020
    • Январь 2020
    • Декабрь 2019
    • Ноябрь 2019
    • Октябрь 2019
    • Сентябрь 2019
    • Июнь 2019
    • Май 2019
    • Апрель 2019
    • Март 2019
    • Февраль 2019
    • Январь 2019
    • Декабрь 2018
    • Ноябрь 2018
    • Октябрь 2018
    • Сентябрь 2018
    • Август 2018
    • Июль 2018
    • Июнь 2018

    Рубрики

    • Вера

    Страницы

    • Карта сайта
    © Copyright 2020 Искра. All Rights Reserved. The Ultralight by Raratheme. Powered by WordPress .